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Transformations of Gaussian Random Fields and a
Test for Independence of a Survival Time
from a Covariate

Ian W. McKeague A. M. Nikabadze Yanqing Sun

Abstract

It has been almost sixty years since Kolmogorov introduced a distribution-free om-
nibus test for the simple null hypothesis that a distribution function coincides with a
given distribution function. Doob subsequently observed that Kolmogorov’s approach
could be simplified by transforming the empirical process to an empirical process based
on uniform random variables. Recent use of more sophisticated transformations has led
to the construction of asymptotically distribution-frce omnibus tests when unknown
parameters are present. The purpose of the present paper is to use the transformation
approach to construct an asymptotically distribution-free omnibus test for indepen-
dence of a survival time from a covariate. The test statistic is obtained from a certain
test sti.tistic process (indexed by time and covariate), which is shown to converge in
distribution to a Brownian sheet. A simulation study is carried out to investigate the
finite sample properties of the proposed test and an application to data from the British
Medical Research Council’s 4th myelomatosis trial is given.

1 Introduction

A standard way of testing for independence of a survival time froin a covariate z is to fit
Cox’s (1972) model for the conditional hazard function, A(t|z) = Ao(t)e”?, and test whether
the regression parameter (8 is zero. However, this test has limited power because of the
restrictive (viz parametric and multiplicative) modeling of the covariate effect.

In this paper we develop an omnibus test that can detect arbilrary forms of dependence
of a (possibly censored) survival time on a one-dimensional covariate, and which is asymplot-
ically distribution-free. The latter property will be achieved via the transformation method
of Doob (1949) and Khmaladze (1981).

We begin by giving some background to the general problem of constructing omnibus tests
(i.e. tests consistent against all alternatives) which have the distribution-free property. First
consider the simple hypothesis F' = Fy, where Fy is specified and the life times T, -+, T},
are completely observed iid random variables having distribution function F. Let [(t) =

YAMS 1991 subject classifications. Primary: 62G10; secondary: 62G20
?Key words and Phrases. Distribution-free omnibus test, innovation Brownian sheet, counting processes,
martingale methods.
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y I(T; < t) be the empirical distribution function of the T7's and v, (f) = /1 (I (1) --
Fo(,)) the empirical process. Assumie that /4 is continous. Doob (1919) transforined 1,(1)

-

to the uniform empirical process w,(r) = 1, (F;7( r)}, which i3 an empirical process hased
on the iid uniform random variables Fo(73), 7 = 1.---.n. The distribution of v, does not
depend on I (and it converges weakly to a Brownmn lni(lgo). so the distiibution of any test
statistic that is a functional of u, is {ree from [y, Iu particular. the Kolmogorov Smirnov
statistic sup, |u,(r)] and the Cramér von Mises statistic [ ul(x)dr are distribution-free.

Next consider the composite null hypothesis 17 = Io(+,0). where 0 is an unknown pa-
rameter. The natural extension of the above transformation. @, (r) = i, ( e 0)). where
(t) = \/7_)(]:'(!) - 1"0(1,,())) is the parametric empirical process and 0 is an estimator of 0, is
unforturnately no longer distribution-frec or even asymptotically distribution-free {Durbin.
1973). As a cousequence, classical statistics such as sup, i, ()] or [ &(w)de have limit
distributions which depend on Fy. Thus it is necessary to construct a more sophisticated
transformation of 7, that can provide the basis for goodness-of-fit tests, generalizing what
the uniform empirical process does in the case of simple hypotheses.  Khmaladze (1981)
introduced martingale methods to address this problem: see also Nikabadze (1987). The
parametric empirical process ¥, converges weakly to some zero-mean Gaussian process v
(Durbin, 1473). so Khieladze first trensformed the process v Lo an innovation martingale,
which is a Gaussian process with independent increments and covariance function Fo(sAt, 0)
and which preserves the information in ». Then lie transforined the imnovation martingale
to a standard Brownian motion w. Applying the trausformation v — w to #,, results in
a test process that converges weakly to Brownian motion. This leads to an asvmptotically
distribution-free omnibus test.

Chi-squared tests are widely used for goodness-of-fit testing and for testing independence
of two variables in a contingency table analysis. They were first introduced by Pearson (1900)
fur simple hypotheses F' = Fy. The chi-squared statistic is formed by dividing part of the
real line into cells and comparing the observed and expected frequency in each cell. Fisher
(1922, 1924) extended this statistic to handle the presence of an unknown parameter 0 in
Fy. Chi-squared tests depend on an arbitrary chivice of intervals and they only use grouped
data. Although chi-squared tests are easy to perforn, they are not omnibus (unless the
variables are discrete) and are typically less powerful than tests of Kolmogorov--Smirnov or
Cramér-von Mises type, which use all the information in the data.

In survival analysis, one is rarely able to observe complete hife histories. Important
exarnples occur with right censoring and lell trancation (Keiding and Gill, 1990, These
examples fit into the gencral setting of Aalen’s (1978) multiplicative intensity niodel for
counting processes. In that sctting it is natural to formulate hypotheses i terms of the
hazaid fuinction A(t) ov the canulative hazard function A(l) = f(; A(s) ds. rathier than the
distribution function F. Andersen ct al. (1982) studied tests of the simple hypothesis A = A
in terms of functionals of /(A — Ay}, where A is the Nelson-Aalen estimator. Hjort (1990)
considered the composite hypothesis A = Ao(-.0). with statistics based on functionals of the
process v/n( /\(i — Ay(t, 0)), where § is the maximum likelihood estimator of 0. This process
cuverges wedhly (o g acio-mean Gausslan process auder the null by pothesis, and can bhe
used to construct chi-squared tests. Alternatively. an innovation martingale can be found

fur the Jimit process nud used construct an asvinptotically distribution-free ommibs toet,

.

applications of survival analvsis it 1s hmportant 19 consider swhether a covariate
In many apphications of survival Iy t tant 1o consider whetl 1
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has some effect upon survival, say throngh the conditional hazard function A(f]z) = X(t. 2).
That is. one would like to test the null ivpothesis

Hy : A1, z) does not depend on the covariate z,

against the general alternative that A(Z,z) depends on z. For simplicity, we shall restrict
the domain of (£,2) to be the unit square. An omnibns test of 1y is feasible when the
covariate is one-dimensional, such as age at diagnosis. discase duration, ete. Indeed; Mclk-
caguc and Utikal (1990, subscequently MU) proposed siuch a test based on the process
Xt =) = \,/h—(./i — A). where A is an estimate of the doubly cunmlative hazard function
A(t,z) = [ifd Ms.a)deds, and A(1, z) = =A(1) is the natural estimate of A under 11,. They
showed that X converges weakly under [ to a Ganssian random field of the Torm

tps trl
171.(1‘:)2/0/0 \f/um'_b(:)/u_/o gdv. (1.1)

where W is a Brownian slicet and 1, b, g are certain nonrandom functions. The above stochas-
tic integrals are defined in the L#-sense, sce Wong and Zakai (1974). MU's test was based on
the Kolmogorov - Smirnov statistie eomputed dircetly from X. However, while asvmptotieally
omnibus, such a test is not asymptotically distributivn-free and would require simulation of
the process m to find critical valucs.

We shall construct a transformation J that maps m to its innovation Brownian sheet. An
estimated version J of J will be obtained by plugging an estimate of i into J (it turns out that
J does not involve ¢ and b is known). We then show that J(X) converges weakly to Brownian
sheet. In this way we obtain an asymptotically distribution-free onmibus test for Iy, with
the Kolmogorov-Smirnov statistic computed from J(\) No simulation technique s needed
to find critical values. The test statistic converges weakly to sup [17(4. 2)|. Although an exact
formula for the distribution functic.i of sup |W(t. z)| is not known (only approxiniations are
available, see Adler (1991)), it is straightforward to carry out a single Monte Carlo experinent
to evaluate it quitc accurately. Thus, our test avoids difficulties arising from simulating the
null distribution for cach particular problem.

The paper is organized as follows. In Section 2. we construct the transformation J. 1n
Section 3. we introduce the estimate J and define the test statistic. Results of a simulation
study are reported in Section 1. In Section 5, the test is applied to a set of data from the
British Medical Rescarch Council's (1984) 4th myelomatosis trial. Properties of the test are
proved in Section 6. Various lennmnas needed through the paper are collected in an appendix.

2 Transformation of m to Brownian Sheet

Iu this section we coustruct our trausformation ./ of the Gaussian random field min (1.1) to
I3rownian sheet. Such a transformation is likely to have further applications in nonparametric
statistics beyund vur test for independence- in any setting where a test procvess converges
weakly to a process of the form (1.1): e.g. in testing whether A(7.2) is independent of 1 (i.c.
the roles of ¢ and = are reversed), or testing whether a pure jump process on a finite state
space 1> a sctin-Mat ko PIocess, see 18 Section 125, Of codise, iU s u.\lul”_\ neeessdary Lo

estimate J and how that is done will depend on the particular application.




We begin with a key proposition showing that the law of a Brownian sheet W is preserved
under a shift. of 11" by a certain functional of 11,

Proposition 2.1 Lt k€ L*([0,1]%) satisfy JUE (soo)de > 0 ace. [ds] for u < 1. aud Iet W
be a Browuian sheet. Thoa

1 s
by =wos - [ [ 55 T ) i) e (22)
0 u (s.v) (/v

is a Brownian shect ou [0,1]%. The relation (2.2) is invcrtible:

W(l.2) = B(l.z) + /0 [/0'/l ‘[—(”—}L(l)(—’l"ldn(x)] du. (2.3)

Proof lect

(s.x)h(sou)l (e 2 u)l(s <)
Sk vy di ‘

B(l,z) = W(t,z) /[/O/ BT dll(cr)]du

Notice that B is a Gaussian random field. so we only need to inspect its covariance fuction.

For (¢',2") € [0,1]%,

a(tyuis,r) =

Then

cov(B (t, = ) = (At AS)

). B(t
S ’ = S, l\(
/ [//(; (' u": rdd:}du /0[// a(l.uis, ) 11}(111
+// [// a(t,urs,o)a(t' ' s, 1)[.(/(](/“(1”

(AL /\~)

-{—/0:/0 [/0[) a(t.uss.c)a(t' o' s, r)dsdr

1 1
—/ a(f w0’y (s <t')ds — / alt’ u'ysou)l (s < 1) ds| du' du.
JO

JO

Since

fda(t,uis.o)a(t' v’y s, x) de
ks, u) (s S )k(s,u ) (s <) PR s. ) (e > u V) da
B [l k(s v)do [ K (Q.l’)dl
k(s V(s (v 2 w) (s < 1)I(s < ')
- TR (s o) do
E(s,u" ) R(syu)l(a > u"Y (s < O« <H)

i [l k2(s.v) dv

=allouys.u Y (s <)y +a(t' o sou)l(s < ).

for almost all (u.u'.s) € [0,1]%, we have that B is a Brownian sheet. It can be verified
nmmediately that (2.3) is the mverse of (2.2). o




A Brownian motion w(?) is called an 1tunovation process of a process &(1) if w carries
the same “information™ as the process &, i.e. the a-fields F* and FE generated by o and €
up to cach time ¢ coincide, sec Liptser and Shiryavev (1977, p. 260). For our purposes. the
appropriate extension of this definition to a two- parameter pm((‘ss &(1.2) and a Brownian
sheet B(t, =) is made by requiring FP = F{, where Ff = o{&(s,2);z € [0.1],s € [0.4]} and
FPE is similarly defined. Note that FE represents the mfmmat.mn about &(s.2) at all values

of z and all s <t
We now give the main result of this section, providing an innovation Brownian sheet for

the process m in (1.1).

Theorem 2.1 Supposc that h : [0.1}> = I is a bouvudcd positive mcasurable function which
is boundcd away fron zero, b [0,1] = R is differcatiable with squarc integrable derivative.

JH¥(x) de >0, 2 €10,1) and g € L*([0.1)*). Thea

lpz 1 trl uAz 1
£} = 2 dm - “2(s, S, U, : S. 2.
£ /0/(; h=2 dm /n/o [/0 h™2(s.0)Q(s,u, 1) dr| dwn(s. u) (2.4)

is an innovation Brownian shect of the process m, where

II_IF(S. ) (u)h= 5 (5, 0 )W (1)

Qs u,x) = [ h=1(s, 0)(¥(v))2 dv

Proof Notice that

1 runz 1 & !
// Q(scu, xYhz(s. )b (u)de du = / h=2(s..0) (x)du.
0Jo 0

- /U '/0' G

Let

Substituting n into (2.4) we get ’
Bltaz) = k)~ / [/ i b e ) )d1]l/(d~)
// [/ qua)da}dﬂ( u)
0
-+-/0/0 [ j Q(.s',u..r.)(l.r]lz'%(s,u)b’(u)(/u('(‘/s)
trl 2 1 )
= 1-1*(1,.:)-1)/0 g(s,y)[/o h'f(s,;z:)l)’(:r)d;r] dIV (s,y)
S il
—/0 [/0/ Q(s,;,,,lf)dw(s.y)] o
trl 1 pun: 0
+/0/0 [g(s.'_t/).[)./u Qs )bz (so)b (u) dor du] dW (5, y)
2 1rl
- H'(t.:)—/ [// Q(.s.,f/,.r)(/H"(h‘._l/)} dr. (2.5)
JO JOS

This 1s a Brownian sheet by Lemma 2.1 with k(s.2) = b~ ‘(s ). The innovation
assertion can be casily obtained by (2.1). (2.5) and application of Proposition 2.1. 0



We shall use the notation J for the transforimation £ — J(&). where £ is a random ficld
and J(£) is defined by the right side of (2.4) with m replaced by £ The domain of J s
composed of random ficlds € for which the stochastic integrals in J(€) exist in the L?-sense.
Theorem 2.1 shows that J(m) is a Brownian sheet.

3 The Test Procedure

In this section we first deseribe the counting process framework for onr probleur and formally
define A and A. Then we show that the transforntation J given above asvinptotically
transforms X = /(A — A) to a Brownian sheet. This is done via the continnons mapping
theorem, Finally, we construct aun estintate J of J and show that J{X) converges weakly to
a Brownian shect. This will complete the construction of our test.

-

3.1 The Estimators A and A ‘

Let N(t) = (N(f), -+, Nu(1))s T € [0.1], be a nultivariate connting process with respect to
a right-continuous filtration (Fy), i.c.. N is adapted to the filtration and lias components N;
which arc right-continuous step functions, zero at time zero, with junips of size +1 such that
no two components jump siinultancously. Assume that N; has intensity

Nl = YoM, Z(1)),

where Y; is a predictable {0, 1}-valued process. indicating that the ith individual is at risk
when Yi(t) = 1, and Z; is a predictable [0, 1]-valued covariate process. The function A{, z)
represents the failure rate for an individual at time ¢ with covariate Z,(1) = =. We assume
throughout that (N Yi. Z;). 1 = 1,-+ - 0 are nd replicates of an underlying 'rlplv (N.YL ).
Let F(s,z) = P(Z; < r.Y; = 1), and assume that for cach s € [0,1]. F'(~,-) is absolutely
continuous on [0,1] with subdensity f(s.:). The functions b. h, ¢ in (1.1) are given by
b(z) =z, h =A/fand g = /X7 J. The transforniation J will only be used with these b and
I from now on. We assumie that f and A are Lipschitz, of bounded variation, and hounded
away from zero.

Consider d, equal width covariate strata I, = [,.y,2,). r = 1,....d,. where &, = ru,.
and w, = 1/d, is the stratum width. and let Z. = 7, for = € Z,. Then, as in MU, define

//{ i d” *) - dr. (3.6)

where NU(t,2) = T, [ I{Zi(s) € T.) dNi(s) is the number of z-specitie failures observed
up to time ¢, and Y ")(¢,2) = Z?_ I(Z(t) € Z.)Y;(1) 1s the size of the z-specific visk set at
time ¢. The estimator A does not involve stratification of the covariate and can he obtained
by setting w, =1 A. Tn (3.6) and throughout the paper. we use the convention 1/0 = 0.

3.2 A Continuous Version of .J

We now introduce a version J of J that is defined on a suitably Targe funetion space and is
continuous on a subspace supporting . so the continuous mapping theorem is applicable,

0




Let Dy = D([0,1]%) be the extension of the usual Skorohod space to functions on
[0.1]% sce Neuhaus (1971). Let BV) denote the subspace of fuictions & € 1, for whicl
£.£(0,:),&(-, 0) have bounded variation. and let (77 denote the space of continnons functions
on [0, 1]%. Equip ), and Cy with the uniform nornn,

For £ € C, U BV; and (2,2) € [0.1] x [0, p]. with 0 < p < L. define

. Lr2 trl
JE)(L. 2) =./u/0 NieoVdE{eT) —/U [ s syt ), (3.7)

where the integrals are considered to be weak integrals (ildebrandt. 1963). and

Ni{s.x) = h"%(s. w).

o B . zAnu h_%(,\‘.r)
falsws) = b7 [ ey de

The upper bound p on the domain of = is used to keep the the denominator in fy bounded
away from zero. In practice p would be taken close to 1 (the end of the range of covariate
values). Note that J is a well-defined map from CoU BV into Dy([0.1] x [0, p]) since Lemma
1 shows that A inherits the properties of f.A: and Lemma 2 ensures the existenee of the
weak integrais when € € Cy. We have included B17% in the domain of J because the paths of
X belong to BV2, but not to C,.

Theorem 3.1 Suppose that w, X n~°. where § < a < 1. Then, under Hy. J(X) converges
weakly to a Brownian sheet in Dy([0. 1] x [0, p}).

Proof Properties of fi, f, obtained via Lemma 2 can be used to show that ./ is continuous
as a map from C; into Dp([0,1] x [0, p];. In particular, we use the property that fo(-.-, z)
has bounded variation uniformly in =, 0 < = < p. MU (Theorem 4.1} gives that X' converges
weakly in D, to m. where m is defined by (1.1) with i(z) = =. Thus, since the sample paths ol
m belong to ("; a.s.. the continuous mapping theorem (Billingsley. 1968) gives .7(.\')-1—‘—».]—(m)
in D,([0.1] x [0.p]). The processes J(m) and J(m) have continuons sample paths and. by
Lemma 3, they agree a.s. at cach fixed (1.z2), so they are indistinguishable. Theorem 2.1
(with b(z) = z) implies that J{m). and hence J(m), is a Brownian sheet. 0

3.3 Estimating the Transformation

In order to use the above result to build a test statistic, we need to estimate the unknown
function in J, namely h. First consider the kernel estimator h suggested by MU:

- e e A =
]I(L”)—E-/O-/O I\( i >l\( o >(111(.s,.1.).

where b, 1s  vandwidth parameter. A is a Lipschitz nounegative kernel funcetion with com-
pact support aund integral 1. and

or

:/' N0 (ds i)

l/(l-,:) = 71((‘11/ T m

0.




is an estimator of H(1,z) = [ofi h(s..r)dsdxr.

We will need to apply methods from stochastic calenlus to varions martingale integrals
m\ol\mg h, which is possible provided that h(-.2) is an F-predictable process for cach fixed

. Since h( . 1) is contimous, it is enongh that it be adapted to the filtration F,. Thus, we
shall usc a kernel function A having nonnegative (as well as compact) support.

The estimated transformation Jis defined by jnserting a triumeated version b of i in place
of hin J, where I is given by

- -

h(tozy = h{t. =) [(c;" < h(l.z) < ).

cn > 0. Note that J(X) is well-defined since the paths of X helong to 1315,

3.4 The Test Statistic

If we show that J(.X) converges weakly to a Brownian sheet, then onr test for /1y can be
based on the Kolmogorov-Siirnov statistic

S = SUPg<r<1.0<2<p |J(\/'_’(~A - A))(L.2)]

with P-valies calculated from the distribution of supye <) gcec, (W (1. 2)]. For that purpose
we restrict the choice of wy,, b,, ¢, as follows:

Condition 3.1

-

9
w, X n where = <a <l

-3

b, < u where 0< J<: (l - a).

¢, < (logn)” where 4 >0.

. o B Y ) _1
This condition is satisfied. for examnple, by w, xn=3, b, x n7¢.

Theorem 3.2 Under Hy. J(X) converges weakly to a Browuian sheet in DL([0.1] x [0.p]).

Our final result shows that the test based on S is omnibus. consistent against any depar-
ture from the null hypothesis 1.

Theorem 3.3 The test based on S is consistent agaivst the general altcrnative that X!, z)
depends ou z. for (1.2) in the domain (0. 1] x [0.p].

4 A Simulation Study

We have carried out a limited simulation study to assess the performance of the proposed
test. We considered the olmogorov-Smirnov statistic S with the supremumn taken over
[0,1] % [0..9]. i.e. p = .9. The covariate was taken to be uniformly distributed over [0.1].
The censoring was simple right censoring. independent of the failure time. and exponentially
distributed with parameter adjusted to give a prescribed percentage 5% (low), 10% (moder-
ate), and 75% (heavy) of censored observations before the end of follow-up. The covariate
strata were arranged to contain equal numbers of observations. For sample size n = 180,

[ 2



Table 1: Observed levels and powers of tie test for independence of a survival time fronn a
covariate with nominal level 5%.

A1, 2) | sample censoring
size | 5% 0% Y%
180 [.038 021 000
I 300 .042 039 003
50 | .03 .05 001 |
180 | .063 025 007 |
& [ R000 1181 116 011
500|523 BN 069
IR0 | 128 053 008
E 300 | 118 279 02
500 [ .872 703 82

300 and 500, the number of strata d,, was taken to be 12. 15 and 20. resulting in 15, 20, 25
covariate values in cach stratum. The corresponding bandwidths b, were (29, 26, .22, and
the kernel function A was taken to be the indicator of [0, 1].

The survival times were gencrated using the Cox model A(#,2) = ¢/*%, for 3, = 0 (null
hypothesis), 1 and 2 (alternative hypotheses). Table 4 gives observed levels and powers of
the test at a nominal (asymptotic) level 5%, with each entry based on 1000 samples. In
order to obtain the asymptotic 5% critical level for our test (i.c.. the 95th percentile of
SUPger<yo<s<.o | W/t 2)]). we generated 10.000 replicates of the Brownian sheet evaluated on
a grid defined by 300 equally spaced points on each axis. Plots of the density and dist ribution
function of the supremum of the absolute value of the Brownian sheet over [0, 1] x [0..9] are
given in Figure 1. The 5% critical level was found to be 2.28.

The simulation results show that the observed levels are close to their nominal 5% values
when the sample size is at least 180 and censoring is light or moderate. The power reaches
52% at sample size 500 and low censoring, when the alternative is A(4.2) = ¢*. It exceeds
70% at sample size 500 when the alternative is A(1.z) = ¢** and ceusoring is moderate.

In Figures 2-4 we give plots of the observed densities (cach based on 1000 samiples) of
the Kolomogorov-Smirnov statistic S under the null and alternative hypotheses. They are
compared with the density of supyc,c; pezcs [H (1 2)] When the sample size is at least, 300
and the censoring is light or moderate. the observed densities agree well with their theoretical
limit (see Figure 2). Under the alternatives A(f,z) = ¢ and €%, when the sample size is at
least 500 and the censoring is light or moderate, the two curves are quite separate, giving
some idea of the power of the test (see Figures 3 and 4). In Figure 5, we give perspective
plots of a realization of Brownian sheet and a realization of the test process J(X) (with
AL, z) = 1, sainple size 500 and light censoring). As expected. these plots are qualitatively
very similar to one another.
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Figure 1: (a) The deusity and (b) the distribution function of sup |[W (¢, 2)]. (¢, =) € [0.1] x
[0,.9].
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Figure 2: Cbserved density (dotted line) of the Kolmogorov-Smirnov statistic § under the
null hypothesis A(t,z) = 1 compared with the density (solid line) of sup |[W(¢, z)|.
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Figure 3: Same as Figure 2, but for the alternative hypothesis A(t,z) = ¢°.
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Figure 4: Same as Figure 2, but for the alternative hypothesis A(¢, z) = ¢*.
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Figure 5: A single rcalization of Brownian sheet (first row), and a single realization of )

(second row) from simulated data (n = 500, light censoring) under the null hypothesis
A(t, z) = 1. Positive parts are on the left, negative parts on the right.
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Figure 6: The test process j(X) for the BMRC data (positive part on the left, negative part
on the right).

15




5 Application to Myelomatosis Data

We applied our test to a set of data from the British Medical Rescarch Council’s (BMRC)
(1984) 4th myclomatosis trial. The data set contains records for 495 patients, wicluding
censoring indicator, serum 3, microglobulin (at presentation) and survival time (in days).

Many studies (e.g., Cuzick et al. (1985)) have suggested that serum 32 microglobulin has
a strong effect on survival, at least in the first two years of follow-up. In our analysis of the
data, we shall ignore all covariates except for serum 3; microglobulin, which 1s taken on a
log,o scale normalized to the interval [0,1]. The end of follow-up is taken to be 2000 days,
before which 3% of the observations are censored. 81 patients were still at risk at the end
of follow-up. The survival time is divided by 2000 to normalize it to the interval [0,1]). The
covariate interval [0, 1] is divided so that each stratum contains 20 covariate values except
for the last stratum. We used p = .9, as in the simulation study.

We have plotted the test process J(X) in Figure 6. The magnitude of the negative part
of J(X) shows strong departure from a Brownian sheet, cf. Figure 5. The statistic & was
found to be 5.335, which is highly significant. Our analysis confirms the strong influence of
a patient’s serumn B; microglobulin on survival.

6 Proofs

In this section we prove Theorems 3.2 and 3.3. We begin by introducing some notation. Let
M; denote the Fi-martingale M;(t) = Ni(t) = J; Ai(s) ds, and set

n

M™(,z) = Z/Otf T.) dMi(s)

A, 2) = 3 I(Zi(s) € T)Yilt)A(, Z(1)).

For a process {(t, z), set &.(t) = é(t,z,) where z, = rw,, r =1,...,dn.
We shall have frequent use for the following bounds from MU (Lemma 1):

k
flrxaE{-YTll)%—m—)] < 00, for any positive integer k, (6.9)
sup P(Y"(s,2) = 0) < e ", for some C > 0. (6.9)
s,T

Proof of Theorem 3.2 By Theorem 3.1, it is sufficient to show that under Hy,
= A I P
1(J = J)(X)}—0,

where || - || is the supremum norm on D;([0,1] x [0, p]). This will be done in the following

two steps:
“ / 7 ax| 0

] o
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L.0. (6.11)




where f; = f; = f;, and f; is obtained by inserting hin placcof hin f;. i =1.2
Step 1 By the decomposition of X given in MU (proof of Theoren 4.1),

/ot/oz ADENS ‘/'7// )4((:)) (i:;) dz (6.12)
A e S TR
+// fi(s,2) \/n(;‘,((';))(( )) A(s,:r)) drds
+\/_/0/ Si(s.x)A(s) 1(Y"(s) = 0)dzx ds,

where M) ¥(") are defined by setting Z, = [0,1] in M™, ¥ respectively. We denote the
four terms in the above decomposition by I), I3, I3, I, respectively. Since K" is continuous
and has nonnegative support, we have that A(., z), and therefore fi(-,z), is Fi-predictable.

Thus the stochastic integrals involved in I, and I; are square integrable martingales. Now
[l71]] is bounded by

10(d
supr) +\/r_zsup /f,A,(n) s) ’ (6.13)
}
where =
M) (ds)
0=, [Seen] e ceo = [[ [ Roe) S

Since 7(t) is a positive submartingale, Doob’s inequality gives Esup,n*(t) < 4En*(1). Also,
since E£(1,r) =0, and E£(1,5)€(1,k) =0 for all 1 < j # k < d,, we can apply Menchoft’s
inequality (see, e.g., Shorack and Wellner, 1986) here to get

En(l) < <log4d )Qi /( fls:z'dr) nA(")(s

log2 / {5 (")(8))

O(logd,J’Z/ E[(/ f_,(s,x)dx) )’(") ]de

IN

< O(logdy) ;/ [ 2)ds )—’T”f—(—)] ds
dy , 1
< Oflogd,) [;/ ( fi(s, z) dr) ds] [Z/o E()j::("' ) ds]
< O(logd,) dn[g/ (w?1 /I' |f,(s,z)|3dm> ds]g
= 0(1ogaz,,)?[/0/0 E|f,|3dsdx]%. (6.14)

The second term in (6.13) is bounded by

t_ M™(ds
[ s ()

dx.
¥ (s)

\,'/'ESUP/ SUP
r JI,
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which has second moment bounded by

M™(ds)
/‘fl Y(")

IN

nw"/ Fs“"l/ ‘ A)’:) ((i\ rl)
1)// [fl)(:;un )] dsdzx
[// BV dsda] L)

where Doob’s inequality, Holder’s inequality, and (6.8) are used. Thercfore

nw Esup/ sup

IN

A

1l Z
E||L|? 50(1ogd,,)2[// E|fl|3dsd.r] . (6.16)
0Jo
From (6.16) with w, =1,
1,1 g
R & r1? " -
BRI = o) [[ EIRf dsdz]. (6.17)
Next,
A (s, ) 2r s1p1
2 <« ! - 2 4 ]
E|L|? < sxfE[\/ﬁ(————Y(n)(s,x) A(s,x))] [/0/0 Ef?ds da
1r1
_ 7 |2 6.18
ot) [ [ EVAP dsds, (6.18)

by Lemma 6. Using (6.8) once more,

E|LI? = 0(1)/0'/0‘ Elfi|? dsdz. (6.19)
It can be checked that
11l € Oea)lfe = h|I(R # 0) + O(D)I(h = 0),
uniformly in ¢, z. Thus, since h = hif b # 0,
E|fi < O(S)E|h = h]” + O(1)P(h = 0),

so, from Lemmas 4 and 5,

1,1 _
/ / E|fiPP dsdz = O(n™%). (6.20)
0J0

Combining the bounds (6.16-6.20), we find that the second moment of the lhs of (6.10) is of
order O(log dn)zcﬁn'%<, which tends to zero by Condition 3.1. This establishes (6.10).

Step 2 We now prove (6.11). Let

e b=V (s, u)h3 (s, 1) 3 h"(s,u)h'%(s.m) (6.91)
T JHh=Y(s,v) dv Job=Y(s,v)dv -
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By the arguments of Step 1, the second moment of the lhs of (6.11) is bounded by
p trl 2 P 1rl :
( 2 E16(s, 10, 7)Pds d ] d.
[) Esm:p /0/: 8(s,u,z)dX(s,u)| dz < O(logd,) /0 [/o/u Elé(s,u,z)Pdsdu| dr

O(log d,.)z[_/o‘le/()l Elé(s.u,z)]* ds du d.r] :

= O(logd,)cn 3¢ =0,

IA

where the bound on the triple integral is from Lemma 7. o

Proof of Theorem 3.3 Define

A(t,2) = 2/0'/0' ko) (o) lascdls,

to which A(t, z) converges in probability under the general alternative. From the definition
of J in (3.7), it is easily checked that

PJA-A) ) 3 [ Rt w) A, u) du
Jtoz =asinz) [)‘(t") B [YR-1(t,v) dv '

Suppose that J(A—.A") = 0. Then the expression inside the square brackets above vanishes,
so that

A(z,z)/l h"(t,v)dv:/l RV (¢, W)t u) du.

Taking partial derivatives wrt z both sides gives that dA(t,z)/dz = 0 for (¢, =) € [0,1] x [0, p],
so that Hy holds, contrary to the premise of the theoxem Thus, (A A*)) # 0. From

arguments in the proof of Theorem 3.2, it can be seen that (J = J)(A- A')“LO. Hence,
Il F(A = A -Z+T(A = A7) > 0. (6.22)

Along the lines of the proof of Theorem 3.2, it can be shown that J(Vr(A = A™)) converges
weakly in D;([0,1] x [0, p]), although not necessarily to Brownian sheet, cf. the proof of
Proposition 4.3 of MU. Similarly, using MU (Proposition 3.2), it can be shown iliat J(Vn(A-
A)) converges in the same sense. The triangle inequality gives

VA (A = A € (/R = AN+ S + IIN(Va(A = A = § + Op(1),

the equality holding by the continuous mapping theorem, so that [N by (6.22). Thus
the test is consistent. DO

Appendix

The following lemma is routine.

Lemma 1 Let h,hy, hy be functions on [0,1)* that have bounded variation and are Lipschitz,
with h nonnegative and bounded away from zero. Then 1/h, Vhy and hyh; heve bounded
variation and are Lipschitz.
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The next two lemmas collect some properties of weak integrals in the plane. The first is
a version of the integration by parts formula. Let ¢ : 7 — I, where J = [a.a'] x [b.H].

Lemma2 If £ : J — R is continuous and ¢, é(a,-), and ¢(-,b) have bounded variation,
then the weak integral [[; ¢ d€ exists and is equal to:

// (s,2)E(s, 2) +// £(s,2) dé(s / £(s.5) dg(s. ¥)
b'
+ [ e bdgls b - [ € D)dbe )+ [ darrdoas).  (AL)
Proof Theorem 9.3 of Hildebrandt (1963) gives that the weak integral

J[, (€(5:2) — €(5,5) - €(a,2) + E(a, b)) déls. ) (A2)

exists, and coincides with the weak integral

//J (@(s,x) — B(s,b') — dla’, x) + &(a’, 1)) dE(s, z), (A.3)

which exists by Theorem 8.8 of Hildebrandt. Theorem 5.8 of Hildebrandt shows that &(-, )

and ¢(s, ) are of bounded variation for fixed s,z. (A.1) can then be obtained by rearranging
the terms in (A.2) and (A3). D

Lemma 3 Let £ be a stochastic process on J. If the weak integral [[; ¢dE czists a.s., and
the stochastic integral [[; @ d€ exists in the L*-sense, then they coincide a.s.

Proof The result follows immediately from the definitions of the stochastic integral and
the weak integral, and the fact that an L%-limit agrees almost surely with an a.s.-limit. ©

The next lemma.is a refined version of Proposition 3.3 of MU, giving a rate of convergence
of h to h.

Lemma 4 There erists ( > 0 such that

// EJ(t,2) = h(t, 2)| dtdz = O(n~°).

Proof We shall use much of the notation of MU (proof of Proposition 3.3), without re-
defining it here. Asin MU,

3 .
h=b’<oMh=h+1h= P+ 1R =pT el a1 R ()

For the first term,

() - 2 ) ]

= O(wibz")H3(1,1). (A.5)

non

sup Iil(t,z) - iz(i,z)ls < sup [62 Z[\ <
t,2

'!1]7‘
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Also,

1 Nin) 3
EH(1, 1) [nw,,// N (dy,3) ]

Y(") s,:r)

(n)
< SE[nwn // 2 (.s z) d.sdx] + 8(nwy)

(Y0(s, 1))

S 3
/U (Ic r) 1" . (A)

The first term in (A.6) can be shown to be bounded using (6.8). The expectation in the
second term in (A.6) is bounded by

Ll

3

P MW(ds, ) </ (A1) da. (A7)

(Y(")(s,z))?

where

t ﬁ’[(")(ds,x)
Af)(t)=/0 -_——(Y(")(s,z‘))7

and we have suppressed the dependeice of M,(t) on z. Let {M;] and (M,) be the quadratic
variation and the predictable quadratic variation of martingale Af,, respectively. We shall
use the Burkliolder-Davis-Gundy inequality (Dellacherie and Meyer, 1982, p.287)

E sup M}(v) < CE[M,]?. (A.8)

v€Ef0,1]

Since the square integrable martingale M, is of integrable variation, it has no continuous
part. Hence [M)], = T, (AM;(v))®. The process

t M")(ds, z
£(t) = (M) = (M), = /0 ()75175:;)_)_)1

is a martingale, so E[M,)? < 2E(if,)? + 2E€*(1) = 2E(M,)? +2E(¢),. But. by (6.8),

E(My)] = [/ Y((:))(:;) s]zzo(mlun)ﬁ’
B = Ef Grnemy =0 ()

It then follows from (A.7) and (A.8) that the second term in (A.6) is of order

6-3
O(nwn)30< : ) - 0,

nwn,

so EH%(1,1) < o0, and from (A.5),

n'n

Esup |i(t, =) = h(t, )] = O(w3b7?). (A.9)
t.z




Since sup |h(t,z) — h%(t,2)| = O(by), by the Lipschitz condition on A,
t,22bn

// Ih(, )P dtds = O(b,). (A.10)
For the third term in (A.4),

sup [RO(¢, 2) — k(8 2)|
t,2

1 t—s 1 %

{ ! _-— s 1
b2/ 1\( . )[/(; 1\( b )h r)dr N,Z_:I\( bn )I: 1)](
< —sup[ |1&( )h(a T)— I'(z; r)h(s.;r,)
<—sup / Ix(

)”1‘( b )

< X—O(wnb; ) + O(wy,) = O(w,b?). (A.11)

= sup

dr

h(s,x,)dr] + O(wn)

For the fourth term in (A .4),

SR E|ht(t, z) = h*(t,2)]?

b’d,, Z:l 1»(~ - :rr> /01 1,(t b—ns) (h(S,z,) - nw,,-(-s_r(g%)_);) ds
- 3

< (b*d ) sup 21»%(“ )]

Lll\'(tb—ns)(h(sﬁmr)—nw (_A__‘l_)}_‘)d\ ]%

= supE

e (s)
<0y s B[ [ K(52) (12 - 2L Y
< 0(ghg) a5 [ 10(520 e -]
<o( b;dn) (bacn* sup E[h(s,7) - w(—)i::—((s-)’T .

Using the Lipschitz property of A and (6.8), the supremum term above is bounded by

3
+ O(1)sup P(Y,("(s) = 0)

s.r

y(n)(s)

nu'y,

O(w}) + 0(1) sup B[

- f(saxf)

< O(wd) + 0(1) [0 (L)z] + O(e=Cmon) = 0(—1—)%.

W, nuwy,
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where we have used the Lipschitz property of f and the fact that ¥,{")(s) is a binomial r.v.
with mean of order O(nw,) to bound its fourth central moment. Therefore

() - s =0 (5) 0 (L) =0 (=)
sxszIh (ty2) = h*(t,2)] O(b?; 0 e 0 el B (A.12)
Finally, for the fifth term in (A.4),

supElR(t |3<sup[ER (t, ). (A.13)

Let
= dM (%)

5 = #) 4 A )(';‘"’(s))'-"

Then R(t,z,-)is a n rtingale. Using the same arguments that were applied to A,

t—s

dn
R(t,
bn

s =g LK

-~
-~

ER\(t,z) < E sup R'(t,z,u) < CE[R(t,,-)]] S OU)E(R(t,=,-))} + EE(1)). (A.14)

0<u<t

where §(u) = [R(t, z,-)]. — (R(

,2,+)), is a martingale. Since no two of the counting processes

NM™ r=12-.-,d, jump sxmultaneously,
[R(t,2,)). = 2:(A1~I(t,z,v))2
vsu
- Bh ()
TSI \BE b )7 o ()
3 “ t—s\ dN"(s)
— *2 r
B (ﬁﬁ) ,E_:I\ ( )/0 L ( b, )(y,("’(s))4'
It follows that
2l w oot — s\ dMP(s)
K ( ) 1\'?( ) 2 23 A15
f( (bzdz) :2—:1 _/0 b, (}_,r(n)(s))_' ( )
The last two terms in (A.14) can be bounded above as follows:
2
. 2 no\* <> t—s\ AlNs
sup E(R(t, 2, ) = (bﬁdﬁ) 5:33”3[,5:31"2( )/ ( ) ) d“]
< 0 = )4(nw)esu i‘:l ( 1')1 ( —21)
B bgld;zl " “"prl 1 -
< (T () e
\ P sdv
< O(—-p—> (nw,)"8b2 (b,d,, )?
— b:;’:d:‘: n nén
= O(1)(n%b})"". (A.16)




i
w
=4
<
[xo!
—
[4a)
~

sup E€%(1)

= (3,"3,) suprzm( 2 )/ K ( bn““)E()if::((:)))sds

n 4 dp -z 1 t—3s -
< '4( ') '4( )E 7{n) S -7 d
< O(bm) s:‘xnglx i /01\ i (Y)(s))™ " ds
RN bud
< o(bm) (m00)7 (Bnd)
= O(1)(n°88)! (A.17)
From (A.13-A.17), we get
sup E|R(t, z)* € O(1)[n?b4)"%. (A.18)
t,2

Finally combining the bounds for the five terms in (A.4), we have

// Elh(t,z) = h(t,2) dtdz = O[wlb;® + by +wlb;® + (nw,b2)F + (nb?) 3]
= 0(n~)
51

by Condition 3.1, where ¢ = min(8, % (a — 3)) > 0. a)

Lemma 5 -
// P(h(t,2) = 0)dt dz = O(n~°).
0J0
Proof Let 0 < ¢ £ C < oo be lower and upper bounds for h.
P(h(t,z) = 0) = P(h(t,2) < ') + P(ht,2) 2 cx)

< P(h(t,z) - ht,z) S ¢ = ¢) + P(h(t,z) = h(t,z) 2 cn = C)
= P(h(t,z) = h(t,2) > c=c') + P(h(t,z) = h(t,z) > ¢, = C)
" 3
o Elht2) = (e | Elht2) = bt 2)l
- (el=cs i (¢ =C)
so the result follows by Lemma 4. o

Lemma 6 A2, 2) ,
",z
S},‘I’E[‘/'_‘(Y(n)(t,z) - A(t’”))] i

Proof The expression on the lhs above is bounded by
2

supE[\/ﬁO(wn)l(Y(")(i,:) £0) + O(yVr) (Y™ (1, £) = 0)
< O(y/nw?) 4+ O(n)sup P(Y™(1,z) = 0)

< O(n%“'za)) + O(ne="™) 5 0,

where the last inequality comes from (6.9). 0




Lemma 7 For 6(s,u,z) defined by (6.21),

/// E|6(s,u,<)] dsdudzr = O “5n=¢).

Proof Let
L= 1(h(s,u) #0, ha,2) #£0, [ F(s0)dv #0),
D= (b)) =6) & I(k{s, <)=10) + I( [_l ' (s,0) dv = 0),
Then
8s,0,2)] = Ofen)|(h~ (s, ) = 27 (s, )i H(s,2) [ h71(s,0) o
lehis @) = h-%(s,x))h-’(s,u)/xl h\(s,v) dv

+h4(s, z)h-l(s,u)/ (™' (s,0) = h}(s,v)) dv

T

I + O(Iy)

= 0(cy) c,.|h ) — b7 (s, u)| + |h- 2 s,a) = h” 2(3, )|

+/ |h™ (syv) = E'l(s,v)ldv]ll + O(l>)

= Ofcn

S’

c,%lit(s,u) ~ h{s,u)| + calh(s,2) = h(s,z)|
+cn/1|7:(s v) = h(s,v)|I(k(s,v) # 0) dv
/ h(s,v) =0) dv]-f—O(Ig)
where we have used the fact that h = h when k # 0. Thus,
El§(s,u,2)]° < O(cs)® [C§E|il(s,u) — h(s,u)P + S Elh(s,z) — h(s, z)]?
1 - 1 v
+cf:/ Elh(s,v) = h(s,v)>dv +/ P(h(s,v) = O)dv]
0 0
~ v 1 v
+0(1)[P(h(s,u) = 0) + P(i(s,2) = 0) + P(/ I = o)]
Notice that if h(s,1) # 0, then ;! < h(s,1) < . Smcc h(

s,
cn in a small interval v € [l —¢,1], ¢ > 0. Hence ¢} < h-
Hence [! h=1(s,v)dv # 0, for z < 1. Therefore,

) is continuous, ¢-! < h(s,v) <
Y(s,v) < ¢p, for v € [1 = ¢,1].

1, ~
P(/ L) el= o) < Ph(s.1)=0), forz<l,

Now apply Lemmas 4, 5 and the fact that [} P(h=1(¢,1) = 0)dt = O(n~¢), which is easy to
see from proofs of Lemmas 4 and 5, to complete the proof.
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